In 1980 the State Seismological Bureau (SSB) of the People's Republic of China, the U.S. Geological Survey (USGS), and the U.S. National Science Foundation (NSF) signed the Earthquake Studies Protocol, thereby initiating research programs to benefit the earthquake hazards reduction programs in both China and the US. One of the first elements of this protocol was the establishment of the China Digital Seismograph Network (CDSN), which is also the longest continuing element in the Protocol. Implemented by the SSB Institute of Geophysics (IG) and USGS Albuquerque Seismological Laboratory (ASL), the first phase of the network was installed in 1985-1986 and consisted of nine stations (BJT, HIA, WMQ, LZH, SSE, MDJ, KMI, ENH, and QIZ) with new STS-1 (BB) seismometers, DJ-1 SP seismometer, and an ASL-designed and built data acquisition system (station LZH used a borehole KS36000 and DJ-1 sensors). All data were recorded and shared between China and the U.S., using quarter-inch tape cartridges. By 1995 a satellite link was established between the US and China for the U.N. Conference on Disarmament's Group of Scientific Experts Technical Test-3, providing data from BJT, HIA, and LZH in realtime.

All CDSN sites, except LZH and QIZ, were upgraded to GSN standard systems from 1994-1997, when IRIS joined as a participant in the US-China Protocol. These GSN upgrades to CDSN were jointly conducted by ASL and IG, and included extending the STS-1 to its very-broadband VBB response, adding STS-2 and FBA-23 strong-ground motion sensors, and installing Q680 24-bit data acquisition systems with dial-up telephone links. QIZ was the last to be upgraded in 2001. In cooperation between the US and the China Earthquake Administration (CEA, formerly SSB), the CDSN sites were linked in 2001 by satellite to bring realtime data to Beijing, and made available to the US via the Internet. Realtime data links to the US were discontinued in 2002 and data from BJT, HIA, LSA, ENH, QIZ, and MDJ are now available with a 30-minute delay. All GSN-CDSN data are also provided to the US and international seismological community through exchange of archival data; data availability since 1992 has been about 90%. Current activities include the addition of a microbarograph at MDJ and the initial stages of planning for the next generation of datalogger systems.

Situated amidst the active tectonics of Asia and close to the major subduction zones of the Western Pacific and Indian Oceans, the CDSN is a key element of the 150-station Global Seismographic Network and an outstanding example of US-China cooperation in earthquake studies.