Rupture history of the May 12, 2008 Mw 8 Wenchuan Earthquake: An update

Chen Ji1, 2, Shao Guangfu1, 2, Zhong Lu3, Ken Hudnut4, Jing Liu5, Gavin Hayes6, and Yuehua Zeng6

1Institute of Crustal studies, University of California, Santa Barbara, CA, 93106
2Department of Earth Science, University of California, Santa Barbara, CA, 93106
3Cascades Volcano Observatory, USGS, Vancouver, WA 98683-. 9589 – USA
4Pasadena Office, USGS
5Institute of Tibetan Plateau Research, Chinese Academy of Sciences
6National Earthquake information Center, USGS

We present the complex rupture process of the catastrophic May 12, 2008 Mw 8.0 Wenchuan earthquake constrained by both the waveforms of teleseismic body and surface waves and interferometric line of sign (LOS) displacements. Rupture of this earthquake involved both the low angle Pengguan fault and the high angle Beichuan fault, which intersect each other at depth and separate about 5-25 km on the surface. The rupture initiated on the Pengguan fault but triggered the rupture on the Beichuan fault 10 sec later. These two faults then unilaterally ruptured northeast over 270 km in an average rupture velocity of 3.0 km/sec. The total seismic moment is 1.1x1023 Nm, roughly equally partitioning over the two faults. The spatiotemporal histories of the Pengguan and Beichuan faults are very different but exhibit strong fault dynamic interactions. Along the rupture propagation direction, the average strike-slip displacement is roughly constant from 30 km to 255 km northeast of the epicenter. In contrast, the convergent displacement is significantly only within the first 120-135 km, coincident with the portion of Longmen Shan with a steep slope.